up
en
menu


chieftec_ban_160.gif

logo minifile

::>Cooling Systems > 2014 > 11 > ...

Print version
Republish review

28-11-2014


rss

Composite testing of thermal interface materials 

Sooner or later all computers required to replace the thermal interface on the hottest elements. Many users do not save money to high-quality thermal grease, but often it is difficult to choose a good solution, but the high price does not always match the corresponding efficiency.

What is the role of thermal paste in modern computers? The air has a very low thermal conductivity (about 0.026 W/(m•K)), and therefore acts as a thermal insulator. Thermal interface much better conductors of heat from components such as memory modules, chipset, graphics chip or heat-spreading lid of CPU, to the cooling system, filling the slightest irregularities.

Thermal paste must satisfy a number of requirements associated with its use conditions. So, it must have a low thermal resistance (high thermal conductivity), maintain properties over time and at different temperatures. The viscosity of the insulator directly affects the ease of applying it on the element. Alas, sometimes it can be very difficult to evaluate some of the criteria without having hands-on experience with some heat conducting paste.

In this article we will talk about different retail thermal interfaces and also complete CPU coolers. Unfortunately, manufacturers often provide not enough information about the products of this kind. Sometimes it is impossible to find anything about a particular solution on the manufacturer's website. Therefore, in order to compare the features of different thermal greases we decided to use the cooling system installed on the 300-watt heating element that will create the most similar working conditions and to determine the ability of a thermal interface on the background of competing solutions.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

We’re pleased to present you an update material that in addition to nine new thermal pastes is also extended by three thermal gaskets. Among the first note the apperance of new leaders and outsiders. Naturally, they are significantly different by cost value. We will describe below how did it affect the possibility of applying budgetary decisions in practice.

Thermal pastes

Akasa 455 (AK-455)

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

On the official website there is information about the syringe with 5 grams of thermal paste that comes in a blister pack (AK-455-5G). In the domestic online stores most common are more affordable 1.5-gram syringes. According to the information applied the characteristics of the mixture are not different, but the price of $ 2 looks very attractive compared to other solutions. The inscription «for CPU coolers» alludes to the basic scope, but a wide range of operating temperatures (up to + 240°C) makes Akasa 455 an excellent solution for a hot GPUs.

Compared with paste Akasa pro-grade 460, this thermal interface has a lower thermal conductivity. Next we'll learn how this situation will affect the temperature characteristics.

Model

Akasa 455 (AK-455)

Thermal conductivity, W/(m·K)

>2,4

Dynamic viscosity, Pа·с

76

Relative viscosity (from 0 to 10, the higher – more viscous),

5

Operating temperature, °С

-50…+240

Thermal resistance, cm2·°С/W

0,087

Weight, g

5

1,5

Price, $

6

2

Product page

Akasa

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Subjectively, the viscosity of the conductive paste Akasa 455 can be estimated as 5 of 10, indicating about the absence of any difficulties during its application.

Akasa pro-grade 460

Akasa pro-grade 460 (AK-460)Akasa pro-grade 460 (AK-460)Thermal grease of the company Akasa is shipped in a pretty bright blister pack. And if the front side contains only general information, the rear is more informative. So, at the top is the sequence of applying the thermal interface, a little below is the present specification, as well as a warning that the product should be kept out of reach of children. Thermal paste is made in Taiwan.

Akasa pro-grade 460 (AK-460)

Model

Akasa pro-grade 460 (AK-460)

Thermal conductivity, W/(m·K)

3,3

Dynamic viscosity, Pа·с

102 / 1020

Relative viscosity (from 0 to 10, the higher – more viscous),

6

Operating temperature, °С

-45…+200

Thermal resistance, cm2·°С/W

0,16

Weight, g

3,5

Product page

Akasa

The manufacturer indicates a thermal conductivity at the level of 3.3 W/(m•K), which is not very high value. But a more accurate value of the capabilities of the thermally conductive paste will be learnt only after testing.

Akasa pro-grade 460 (AK-460)

Subjectively, the viscosity of the thermal interface Akasa pro-grade 460 can be estimated at 6 out of 10, which indicates about the absence of the special difficulties during usage.

ARCTIC MX-4

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Thermal paste ARCTIC MX-4 is a pretty well-known solution is very popular among computer users. We were kindly provided by a quite an impressive 20-gram syringe, although retail it is a mixture of 4-gram package. In this case, the manufacturer guarantees the performance of the thermal interface for 8 years.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

On the reverse side of the package you can see a comparison of product temperature indicators with other well-known solutions. Also we can see the inscription in four languages, informing that the thermal grease is harmful to the environment.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Sides have general information about the ARCTIC MX-4. There is available a brief specification, address of the manufacturer (by the way, headquartered in Switzerland), as well as a list of the main advantages: ease of application, the optimal thermal conductivity, low thermal resistance, etc.

The manufacturer claims a relatively high level of thermal conductivity of 8.5 W/(m• K), which is an excellent indicator. However, let's see how the mixture is effective in comparison with other tested thermal interface.

Model

ARCTIC MX-4

Thermal conductivity, W/(m·K)

8,5

Dynamic viscosity, Pа·с

870

Relative viscosity (from 0 to 10, the higher – more viscous),

6

Density, g/cm3

2,5

Effective date, years

8

Weight, g

4

20

Price, $

10

20

Product page

ARCTIC

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

In case of average viscosity (6 of 10) thermal paste ARCTIC MX-4 is convenient to apply.

Balance Stars

Balance Stars

Balance Stars

Balance Stars thermal paste is present in the configuration of the cooling system for graphics cards Coolink GFXChilla. It is contained in the syringe, which is quite convenient, but the substance here is only 1 gram. Indicated data report about the presence of 10% silver oxide, which has excellent thermal conductivity, which should have a positive effect on the efficiency of the thermal interface.

Model

Balance Stars

Thermal conductivity, W/(m·K)

>8,5

Relative viscosity (from 0 to 10, the higher – more viscous),

3

Weight, g

1

Balance Stars

Low viscosity does not accompany by the convenient application of thermal interface Balance Stars on a cooled surface.

be quiet! DC1

be quiet! DC1be quiet! DC1Packaging of thermal interface be quiet! DC1 is performed in the usual manufacturer's black color. On the back side it contains general information that is presented in four languages: English, German, French and Polish. But more useful for the end user will be the specification table placed at the bottom.

Model

be quiet! DC1

Thermal conductivity, W/(m·K)

>7,5

Relative viscosity (from 0 to 10, the higher – more viscous),

7

Operating temperature, °С

-50…+150

Weight, g

3

Price, $

10

Product page

be quiet!

In addition to specification, the manufactures indicates the mixture composition: 10% silicone, 30% zinc oxide and 60% of other metal oxides. Note the relatively high level of thermal conductivity of 7.5 W/(m•K).

be quiet! DC1

Due to its good thermal interface viscosity be quiet! DC1 is applied without difficulty, and complete applier allows more evenly distribute it on the surface.

Cooler Master HTK-002

A fairly extensive range of thermal pastes of Cooler Master offers solutions for any purpose and purses. Thermal interface Cooler Master HTK-002 is the most accessible of them: 4 grams of mixture will cost just $ 3.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2. Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

This solution comes in quite informative blister pack. Its face has possible places of application (CPU, chipset, garphics adapter, etc.), ease of use, dielectric properties and a wide range of operating temperatures. The information on the reverse side provides very detailed characteristics of thermal paste. For your convenience, below they are given in the appropriate table.

Model

Cooler Master HTK-002

Thermal conductivity, W/(m·K)

>4,5

Dynamic viscosity, Pа·с

1400

Relative viscosity (from 0 to 10, the higher – more viscous),

4

Unit weight

2,37

Density, g/сm3

2,63

Max operating temperature, °С

177

Thermal resistance, сm2·°С/W

0,02

Volume resistivity, Ohm·сm

5·1015

Evaporation, (200°С·24 h)

<0,35%

Electric strength, kW/mm

21,7

Effective date, years

2

Weight, g

4

Price, $

3

Product page

Cooler Master

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Due to the low viscosity of the thermal interface it is quite easy to apply.

Coolink Chillaramic

Coolink ChillaramicCoolink Chillaramic

Thermal paste Coolink Chillaramic immediately attracts attention with its colorful packaging. However, it contains only general instructions for use, but users will appreciate the syringe with 10 grams of thermal interface.

Coolink Chillaramic

Model

Coolink Chillaramic

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Operating temperature (peak), °С

-35…+85 (-45…+105)

Density, g/сm3

3,2

Weight, g

10

Price, $

10

Product page

Coolink

The manufacturer does not provide data about the thermal conductivity; therefore, we have to rely solely on a comparison with competitors.

Coolink Chillaramic

A good viscosity allows without difficulties apply thermal interface on the surface of the heating element.

CHBNYX HC-131

CHBNYX HC-131

Bought for 5 USD on the local radio market thermal paste CHBNYX HC-131 is unlikely to demonstrate high efficiency. Unfortunately, any information about it is absent both on the package and in the public domain.

Model

CHBNYX HC-131

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Price, $ (USD)

0,6 (5)

CHBNYX HC-131

It should be noted a good level of viscosity of the mixture subjectively rated at 6 out of 10 points.

Dow Corning TC-5121

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

The inscription «Enermax» on the syringe with thermal grease Dow Corning TC-5121 is not an accident. This solution is a complete to the water cooling system Enermax Liqtech 120X. Since for the testing of the cooling system we used a different thermal grease (to put all participants on an equal base), the possibilities of this mixture are not revealed fully. On the one hand, to find it to retail is quite difficult. On the other the users can have the question: if we have a cooler with this thermal interface, should we use it or immediately take advantage of third-party solutions? Below we will share our opinion.

The manufacturer provides a fairly detailed description of the thermal paste. According to it, the mixture has a relatively low thermal conductivity of 3.2 W/(m•K).

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Application of the thermal interface does not cause any difficulty, and it has a gray color.

GELID GC-Extreme

GELID GC-Extreme (TC-GC-03-A)GELID GC-Extreme (TC-GC-03-A)"Top" solution GELID GC-Extreme has a high thermal conductivity of 8.5 W/(m•K), which should have a positive effect on the thermal performance during testing.

Model

GELID GC-Extreme (TC-GC-03-A)

Thermal conductivity, W/(m·K)

8,5

Dynamic viscosity, Pа·с

85 / 850

Relative viscosity (from 0 to 10, the higher – more viscous)

5

Density, gm3

3,73

Weight, g

3,5

Price, $

10

Product page

GELID

The cost of the thermal paste is about $ 10 for 3.5 grams of the mixture.

GELID GC-Extreme (TC-GC-03-A)

The viscosity of the thermal interface is not very high (5 out of 10 points by subjective evaluation), but the application of the substance on the surface will not be too difficult, and complete applier allows you to distribute it more evenly.

GELID GC-Supreme

GELID GC-Supreme (TC-GC-04-A)GELID GC-Supreme (TC-GC-04-A)Thermal grease GELID GC-Supreme is a solution available from this manufacturer, therefore, an indicator of its thermal conductivity is relatively low -> 4.5 W/(m•K).

Model

GELID GC-Supreme (TC-GC-04-A)

Thermal conductivity, W/(m·K)

>4,5

Dynamic viscosity, Pа·с

250 / 2500

Relative viscosity (from 0 to 10, the higher – more viscous),

5

Density, gm3

2,55

Weight, g

7

Price, $

9

Product page

GELID

The syringe has 7 grams of the mixture. Given this amount, the price of the thermal interface in $ 9 is quite democratic.

GELID GC-Supreme (TC-GC-04-A)

The viscosity level of GELID GC-Supreme is similar to GELID GC-Extreme, and the delivery set has a small applier for the distribution of thermal paste on the heating element.

Noctua NT-H1

Noctua NT-H1Noctua NT-H1Package of thermal paste Noctua NT-H1 is made in appropriate style of other products of the Austrian company. This note applies to use of colors and content. The last has general information in 6 languages, graphic of the application and the thermal interface specification.

Model

Noctua NT-H1

Relative viscosity (from 0 to 10, the higher – more viscous)

7

Operating temperature (peak), °С

-40…+90 (-50…+110)

Density, gm3

2,49

Volume, ml

1,4

Weight, g

3,49

Product page

Noctua

Price, $

9

Noctua NT-H1

Subjectively, the viscosity can be estimated at 7 out of 10 points, which indicates a rather convenient application.

Scythe Silmore SC-200

Scythe Silmore SC-200

Thermal grease Scythe Silmore SC-200 is a complete solution that comes with the CPU cooler Scythe Mugen 3. Packaging is not too convenient, since it does not imply long-term storage of thermal interface after its opening.

Model

Scythe Silmore SC-200

Thermal conductivity, W/(m·K)

0,84

Penetration

250 ~ 320

Relative viscosity (from 0 to 10, the higher – more viscous)

4

Volume electric resistance, Ohm·сm

1,40 x 1014

Producer declared a low level of thermal conductivity of 0.84 W/(m•K).

Scythe Silmore SC-200

Do note that low viscosity makes application of Scythe Silmore SC-200 not very convenient.

SilverStone

SilverStone

This thermal grease is supplied with the cooler SilverStone Heligon SST-HE01.Unfortunately, additional product information was not found, so all the conclusions should be drawn only after practical use.

Model

SilverStone

Relative viscosity (from 0 to 10, the higher – more viscous)

6

SilverStone

Good viscosity makes solution from SilverStone quite comfortable in the process of applying to the surface.

Thermalright Chill Factor

Thermalright Chill Factor

Thermal interface Thermalright Chill Factor is supplied with the cooler Thermalright TRUE Spirit 120M. Packaging is not very convenient since it does not provide long-term storage of the mixture after the first use. However, it has only 2 grams of material.

Model

Thermalright Chill Factor

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Weight, g

2

Thermalright Chill Factor

The viscosity level 6 out of 10 permits without difficulty apply thermal grease on the surface.

Thermalright Chill Factor 3

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2. Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

The new generation of thermal paste from the company Thermalright promises to demonstrate better results than its predecessors. According to the information on the package, the mixture has low evaporation elevl, improved thermal conductivity as well as good value for money and opportunities. Moreover, it does not dry out, is not flammable and does not contain metals or other conductive materials.

On average, 4 grams of mixture will cost you in the amount of about $ 7.

Model

Thermalright Chill Factor 3

Thermal conductivity, W/(m·K)

3,5

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Thermal resistance, °С/W

0,012

Weight, g

4

Price, $

7

Product page

Thermalright

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Do note fairly easy process of applying the mixture, aided by the presence of complete plastic applier.

TITAN Nano Grease (TTG-G30015)

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2. Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

One of the most affordable thermal grease on the market. TITAN Nano Grease is available in two versions: a syringe with 1.5 grams (TTG-G30015) and 3 grams (TTG-G30030) mixture. In both cases, the thermal interface is available in blister packages.

So, it is mentioned about the application of nanotechnology in creating a thermal paste, where is the name of the product. This ensures good thermal conductivity at level of 4.5 W/(m•K). Note that the mixture is recommended for use in CPU coolers and in coolers for graphics cards. And it is composed of silicone (50%) and carbon filler (30%) and metal oxides (20%).

Model

TITAN Nano Grease

TTG-G30015

TTG-G30030

Model

4,5

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Operating temperature, °С

-50…+240

Thermal resistance, in2·°С/W

0,205

Weight, g

1,5

3

Recommended price, $

2

4

Product page

TITAN

Viscosity on a subjective level is 6 out of 10 and does not affect the ease of application of thermal interface.

ZALMAN ZM-STG2

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

According to the information given on the package, ZALMAN ZM-STG2 has very good thermal performance when compared to other solutions on the market. The low level of heat resistance makes this mixture an excellent option for removing heat from the hottest CPUs and GPUs, as well as other components (eg, chipset). Moreover, this thermal interface is an insulator, and its structure is fully consistent with the directive RoHS, restricting the use of hazardous substances.

Model

ZALMAN ZM-STG2

Thermal conductivity, W/(m·K)

4,1

Relative viscosity (from 0 to 10, the higher – more viscous)

6

Operating temperature, °С

-40…+150

Thermal resistance, mm2·°С/W

8

Density (at +25°С), g/сm3

2,88

Weight, g

3,5

Price, $

8

Product page

ZALMAN

Термопрокладки Также в качестве посредника между теплоотдающим элементом и радиатором могут выступать термопрокладки. Традиционно они имеют меньшую теплопроводность по сравнению с термопастами. Но главная разница между ними все же заключается в способе применения. Главная задача термопасты – заполнить мелкие промежутки между поверхностями нагретого элемента и радиатора. То есть местами сохраняется непосредственный контакт, а остальная площадь покрыта лишь тончайшим слоем термоинтерфейса, и только там, где имеются некоторые неровности. Термопрокладки же полностью заполняют пространство между источником тепла и теплосъемником. Таким образом, эффективность термопрокладок по сравнению с термопастами невелика, но и применяются они чаще всего на не слишком горячих элементах: чипы памяти, контроллеры, элементы питания и т.п. Часто их можно встретить между радиатором и микросхемами памяти видеокарты, что вызвано особенностью формы или неплотными прилеганием охладителя. Сравнительно невысокую эффективность данных решений подтверждают и результаты тестирования, с которыми вы можете ознакомиться ниже. Ну а пока давайте поближе рассмотрим тестируемые термопрокладки. 68.jpg Akasa Thermal gap filter (AK-TT300-01/AK-TT300-02) Решения Akasa Thermal gap filter поставляются в картонной упаковке. Они доступны в двух вариантах: Akasa AK-TT300-01 и Akasa AK-TT300-02. 69.jpg 70.jpg Толщина прокладок Akasa AK-TT300-01 составляет 1,5 мм. На лицевой стороне отмечено, что новинки подходят для применения на неровных поверхностях, а при потребности их можно обрезать или наращивать (применять одновременно две и больше). С обратной же стороны сообщается об универсальности изделия, что позволяет использовать его между различными компонентами и их радиаторами. Ну и, конечно же, не обошлось без таблицы спецификации. 73.jpg 74.jpg Аналогичным образом выглядит и упаковка термопрокладок Akasa AK-TT300-02, которые практически идентичны решениям Akasa AK-TT300-01. Единственным отличием между ними является увеличенная до 5 мм толщина. Модель	Akasa Thermal gap filter 	AK-TT300-01	AK-TT300-02 Размеры, мм	30 х 30 х 1,5	30 х 30 х 5 Количество в упаковке, шт	2 Материал	Силиконовые эластомеры Теплопроводность, Вт/(м•К)	1,2 Твердость (по Шору OO)	27 Плотность, г/см3 	1,78 Рабочая температура, °С	-40…+160 Тепловое сопротивление, см2•°С / Вт	0,087 Удельное объемное электрическое сопротивление, Ом•см	1,2 • 1013 Коэффициент теплового расширения (КТР), мкм/°С	600 Цена, долларов	9 Страница продукта	Akasa  71.jpg 75.jpg В каждой из упаковок находятся по две прокладки размером 30 х 30 мм. 72.jpg 76.jpg Наносятся термопрокладки очень просто. Для этого следует удалить защитные пленки, расположенные с обеих сторон.  Akasa Adhesive Tape (AK-TT12-80) 77.jpg 78.jpg Еще одно решение от компании Akasa представлено так называемой клейкой лентой Akasa Adhesive Tape. В отличие от вышеупомянутых термопрокладок, она имеет очень малую толщину (0,3 мм). Но и показатель теплопроводности новинки еще меньше – 0,9 Вт/(м•К). Зато ее площадь поверхности в семь раз больше (80 х 80 мм), что позволяет использовать данное решение во многих устройствах, отрезая кусочки необходимых размеров. 79.jpg Внутри упаковки также присутствует вкладыш с информацией о характеристиках и возможностях применения клейкой ленты. Модель 	Akasa Adhesive Tape (AK-TT12-80) Размеры, мм	80 х 80 х 0,3 Теплопроводность, Вт/(м•К)	0,9 Отслаивание, г/дюйм2	1200  Цена, долларов	6 Страница продукта	Akasa  80.jpg Нанесение клейкой ленты также легко, как и ее более «толстых» собратьев. Тестирование термопрокладок Для тестирования термопрокладок мы использовали тот же кулер Noctua NH-U12S на скорости 1450 об/мин, но уже при охлаждении нагревательного элемента мощностью 35 Вт. Столь небольшой показатель был выбран в связи с тем, что при использовании прокладки Akasa AK-TT300-02 на более мощном тепловом элементе температуры выходили за пределы допустимых норм. Во время тестирования термолента Akasa AK-TT12-80 вырезалась по размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02. Термопасты, принимавшие участие в тестировании, также наносились на площадь, сопоставимую размеру прокладок Akasa AK-TT300-01 и Akasa AK-TT300-02 (30 х 30 мм). 99.png Как видим, большая толщина в 5 мм очень сильно сказывается на температурных показателях Akasa AK-TT300-02. А вот более тонкие Akasa AK-TT300-01 и Akasa AK-TT12-80 продемонстрировали более низкие и приблизительно одинаковые результаты, несмотря на все еще заметную разницу в толщине. Поэтому мы советуем использовать 5-мм прокладку только там, где расстояние от нагретого элемента до радиатора не позволяет применять более тонкие аналоги. Как и предполагалось, ни одно из решений не смогло приблизиться к показателям термопаст, заметно отставая даже от бюджетной КПТ-8. Но это, безусловно, не недостаток, а лишь особенность данных изделий. Ведь, как было сказано выше, они предназначены для использования в местах, где осуществляется отвод сравнительно небольшого количества тепла либо применение термопасты является невозможным или нецелесообразным. Выводы В первую очередь отметим, что показатель теплопроводности является хоть и первоочередной характеристикой, на которую стоит обращать внимание при выборе термопасты, но эмпирический опыт показывает более реальные результаты, местами отличающиеся от ожидаемых. Следовательно, именно практическое тестирование термоинтерфейсов является той лакмусовой лентой, определяющей достойные внимания решения. Итак, лидерами теста стали сравнительно недешевые теплопроводящие пасты, которые можно купить по цене около 9-10 долларов за 3-4 грамма смеси. Что же касается термопаст, поставляемых в комплекте с высокопроизводительными кулерами, то в большинстве случаев они демонстрируют результат, сравнимый с более доступными решениями. Но есть и приятные исключения, одним из которых оказался термоинтерфейс Dow Corning TC-5121, поставляемый в комплекте с СВО компании Enermax.  Что касается термопрокладок, то их эффективность заметно ниже термопаст, как дорогих, так и очень доступных. Поэтому мы вам советуем использовать их там, где идет речь о небольшом тепловыделении, а применять термопасту по тем или иным причинам невозможно. Например, при передаче тепла от чипов памяти, контроллеров или элементов цепи питания. При этом советуем также по возможности использовать более тонкие решения, так как увеличенная толщина термопрокладки негативно сказывается на ее теплопроводящих свойствах. В завершение отметим, что в случае необходимости даже находящаяся под рукой зубная паста может оказаться полезной при отсутствии более специализированных решений и обеспечить нормальную температуру вашего процессора. Однако лучше избегать таких экспериментов, так же как и использования откровенно дешевых термоинтерфейсов, ведь низкая температура – залог более длительной и стабильной работы компонентов компьютера, а также тихого функционирования вентиляторов системы охлаждения. Автор: Олесь Пахолок  История версий: •	02.01.2014 г. – первая версия сводного тестирования; •	28.11.2014 г. – вторая версия сводного тестирования (расширен список представленных термопаст и добавлены термопрокладки). Выражаем благодарности: -	компании Akasa – за предоставленную для тестирования термопасту Akasa 455 и термопрокладки; -	компании ARCTIC – за предоставленную для тестирования термопасту ARCTIC MX-4; -	компании be quiet! – за предоставленную для тестирования термопасту be quiet! DC1;  -	компании GELID Solutions – за предоставленные для тестирования термопасты GELID GC-EXTREME и GELID GC-SUPREME; -	компании Noctua – за предоставленную для тестирования термопасту Noctua NT-H1; -	магазину Зона51, официальному реселлеру компании ZALMAN, за предоставленную для тестирования термопасту ZALMAN ZM-STG2.

The average level of viscosity and packaging in the form of a syringe allow to apply the mixture easy and convenient.


Социальные комментарии Cackle
Site Search
facebook vk YouTube
google+ twitter rss
top10

vote

Голосование